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Abstract In this paper a basic structural problem in Generalized Semi-Infinite Program-
ming is solved. In fact, under natural and generic assumptions we show that at any (local)
minimizer the “Symmetric Reduction Ansatz” holds.
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1 Introduction and the main result

Generalized semi-infinite optimization problems have the form

GSI P: minimize f (x) s.t. x ∈ M

with

M = {x ∈ R
n | g0(x, y) ≥ 0 for all y ∈ Y (x)}

and

Y (x) := {y ∈ R
m | gk(x, y) ≤ 0, k = 1, . . . , s}.

The defining real valued functions f, gk, k = 0, . . . , s, are assumed to be d times, d ≥ 2,
continuously differentiable.
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Among various other applications [4,10], semi-infinite problems frequently arise in
approximation theory, particularly in Chebyshev approximation. In fact, the approximation
of a continuous function F on a nonempty and compact set Z ⊂ R

M by a member of the
family of continuous functions {a(p, ·)| p ∈ P} with some parameter set P ⊂ R

N , leads to
the nondifferentiable problem

min
p∈P

||F(·)− a(p, ·)||∞,Z = min
p∈P

max
z∈Z

|F(z)− a(p, z)| .

It is not hard to see that the latter problem can be rewritten as the semi-infinite optimization
problem

min
(p,q)∈P×R

q s.t. ± (F(z)− a(p, z)) ≤ q for all z ∈ Z .

The main advantage of this reformulation is that the semi-infinite problem is a smooth
optimization problem (if all defining functions are smooth), whereas the original problem
is intrinsically nonsmooth. The price to pay for smoothness is, of course, the presence of
infinitely many inequality constraints. Solution methods for this specially structured semi-
infinite problem can be found, for example, in [5].

In engineering applications such as the approximation of a thermo-couple characteristic or
the construction of low pass filters in digital filtering theory, a modification of the Chebyshev
approximation problem, termed reverse Chebyshev approximation, is considered [6,9]. In
this framework, let F be a continuous function on a nonempty and compact set Z(q) ⊂ R

m

which depends on a parameter q ∈ Q. Given an approximating family of functions a(p, ·)
and a desired precision e(p, q), the aim is to find parameter vectors p and q such that the
domain Z(q) is as large as possible without exceeding the approximation error e(p, q). This
yields the problem

max
(p,q)∈P×Q

V ol(Z(q)) s.t. ||F − a(p, ·)||∞,Z(q) ≤ e(p, q),

where V ol(Z(q)) denotes the M–dimensional volume of Z(q). Again, this intrinsically
nonsmooth optimization problem can be reformulated with semi-infinite constraints.
However, as opposed to the above situation in Chebyshev approximation, now one obtains a
generalized semi-infinite optimization problem:

max
(p,q)∈P×Q

V ol(Z(q)) s.t. ± (F(z)− a(p, z)) ≤ e(p, q) for all z ∈ Z(q),

since the index set of inequality constraints depends on the decision variable. Numerical
approaches to this problem class for small dimensions are presented in [6] and [9]. For an
introduction to generalized semi-infinite programming and a different numerical solution
approach see [10].

For the subsequent analysis, let the space of d times continuously differentiable functions
be endowed with the strong Cc-topologies, c ∈ {0, . . . , d}. In the strong Cc-topology, a base
neighborhood of a function f̄ is given by Uε( f̄ ), where ε is a strictly positive continuous “dis-
tance function”. The neighborhood Uε( f̄ ) consists of all functions f such that the modulus
of the difference of the function values and all partial derivatives up to order c of the functions
f and f̄ at any point x are smaller than ε(x). Note that the Cc-topologies get stronger with
increasing c, i.e. Cc-open sets are also Cc+1-open and Cc-dense sets are also Cc−1-dense.
Note that the space of d times continuously differentiable functions endowed with the strong
Cd -topology constitutes a Baire space. We say that a set is generic if it contains a countable
intersection of Cd -open and dense subsets. Generic sets in a Baire space are dense as well.
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Recall that a set-valued mapping W : R
n ⇒ R

m is called locally bounded if for each
x̄ ∈ R

n there exists a neighborhood U of x̄ such that
⋃

x∈U W (x) is a bounded subset
of R

m . The following Assumption A is a usual assumption in Generalized Semi-Infinite
Programming.

Assumption A The mapping Y : R
n ⇒ R

m is locally bounded.

Let A denote the set of problem data ( f, g0, . . . , gs) such that Assumption A is satisfied.
The set A is C0-open [8].

It is well-known that the feasible set M need not be closed, therefore we consider the
closure M of M instead. In [2] we have recently found a representation of M in explicit
terms. In fact, for Cd -generic problem data from A, the closure of the feasible set is given by

M = {x ∈ R
n | g0(x, y) ≥ 0 for all y ∈ Y<(x)} (1)

with

Y<(x) = {y ∈ R
m | gk(x, y) < 0, k = 1, . . . , s}. (2)

The minimization problem of f on the closure of M will be referred to as GSI P . Now we
are ready to state our main result.

Theorem 1 (Main result) There exists a Cd-generic set of problem data Y such that for all
( f, g0, . . . , gm) ∈ A ∩ Y the following assertions hold.

(i) For GSI P, any local minimizer is a Karush–Kuhn–Tucker point.
(ii) At any (local) minimizer of GSI P the Symmetric Reduction Ansatz holds.

Note that—by continuity—a local minimizer of GSI P is automatically a local minimizer
of the problem GSI P , thus the assertion of Theorem 1 also holds for GSI P . The precise
definitions of a Karush–Kuhn–Tucker point in the context of Generalized Semi-Infinite Pro-
gramming and of the Symmetric Reduction Ansatz can be found in Sect. 2. Section 3 is
devoted to the proof of Theorem 1.

2 Preliminaries

2.1 Karush–Kuhn–Tucker points

In order to describe M in a symmetric way, let us consider the following families of sets,
where K := {0, . . . , s}:

N (x) := {y ∈ R
m | gk(x, y) ≤ 0, k ∈ K },

N<(x) := {y ∈ R
m | gk(x, y) < 0, k ∈ K }.

Definition 2 We say that the Mangasarian Fromovitz Constraint Qualification (shortly
MFCQ) holds at y ∈ N (x) if there exists an open halfspace in R

m containing all the partial
gradients Dy gk(x, y), k ∈ K0(x, y), where K0(x, y) := {k ∈ K | gk(x, y) = 0} stands for
index set of active constraints.

Remark 3 Note that MFCQ is violated at y ∈ N (x) if and only if 0 ∈ conv{Dy gk(x, y) | k ∈
K0(x, y)}, where the symbol conv represents the convex hull.
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Lemma 4 Let Assumption A be satisfied and let x̄ be a boundary point of M. Then the
following two assertions are true

(i) The set N (x̄) is nonvoid.
(ii) MFCQ is violated for N (x̄) at any of its points.

Proof ad (i): Since x̄ lies in the boundary of M it must be an limit point of the complement
�M of M . By definition we have x ∈ �M if and only if there exists some y(x) ∈ Y (x) with
g0(x, y(x)) < 0. Letting x ∈ �M tend to x̄ , the corresponding points y(x) remain in a certain
compact set by Assumption A. Thus, after choosing the points x tending to x̄ accordingly,
we may assume that the points y(x) converge, say to ȳ. By continuity of the problem data it
holds ȳ ∈ Y (x̄) and g0(x̄, ȳ) ≤ 0, i.e. ȳ ∈ N (x̄).
ad (ii): For an indirect proof assume that (ii) does not hold. By (i), the set N (x̄) is nonvoid,
i.e. there exists at least one ȳ ∈ N (x̄), where MFCQ holds. Now MFCQ implies that there
exists y ∈ N<(x̄). By continuity this implies y ∈ N<(x) for x from an entire neighborhood
U of x̄ , but this, in view of the argumentation in (i), yields U ⊂ �M . Thus x̄ does not lie in
the boundary of M , a contradiction. �

From [7] we know that the following assumption holds for a C1-open and Cd -dense set
B of problem data.

Assumption B For any x ∈ R
n and y ∈ N (x) the set of gradients {Dgk(x, y) | k ∈ K0(x, y)}

is linearly independent.

What makes Lemma 4 valuable for us, in order to state first order optimality conditions,
is the following crucial observation. In fact, under Assumption B, the violation of MFCQ at
y ∈ N (x) is equivalent with V (x, y) �= ∅, where V (x, y) is the compact convex subset of
R

n defined by the following equality in R
n × R

m :

V (x, y)× {0} = (
R

n × {0}) ∩ conv{Dgk(x, y) | k ∈ K0(x, y)}. (3)

Remark 5 By Assumption B, 0 ∈ R
n × R

m does not belong to the affine hull of the vectors
{Dgk(x, y) | k ∈ K0(x, y)}, thus 0 ∈ R

n is not contained in the affine hull of V (x, y).

For x from the boundary of M and y from N (x), the elements of V (x, y) serve as a
substitute for the gradients of active inequality constraints used for stating the Karush–
Kuhn–Tucker Condition for standard nonlinear optimization problems in R

n . Keeping this in
mind, the concept of a “Karush-Kuhn-Tucker Condition” for points satisfying the following
(optimality) condition shall be motivated.

Definition 6 (KKT–SIP) We say that the Karush–Kuhn–Tucker (shortly KKT–SIP) Condi-
tion is satisfied for GSI P at x ∈ M and x is called a Karush–Kuhn–Tucker (shortly KKT)
point for GSI P if the following holds. There exist a finite (possibly empty) set of parameters
{y1, . . . , y p} ⊂ N (x), vectors vi ∈ V (x, yi ) and multipliersµi ≥ 0, i = 1, . . . , p, such that

D f (x) =
p∑

i=1

µi · vi .

(Note that the KKT condition reads as D f (x) = 0 if N (x) = ∅.)

In order to make sure that the KKT–SIP Condition is a necessary optimality condition,
one needs constraint qualifications. In virtue of [2], there exists a Cd -generic set of problem
data C, such that for problem data from A ∩ C the following form of a linear independence
constraint qualification is satisfied at any feasible point.
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Definition 7 (LICQ–SIP) We say that the Linear Independence Constraint Qualification
(shortly LICQ–SIP) holds at x from ∂M if for any finite subset {y1, . . . , y p} ⊂ N (x) and
any choice of vi ∈ V (x, yi ), i = 1, . . . , p, the vectors {v1, . . . , v p} are linearly independent.
If x belongs to the interior of M , then we also say that LICQ–SIP is satisfied.

For later use recall from [10] that a local minimizer x for GSI P is necessarily a KKT
point provided that the Assumptions A and B are satisfied, LICQ holds at x and MFCQ holds
on Y (x).

2.2 The Epigraph reformulation

From now on we assume that the Assumptions A and B are satisfied and, moreover, LICQ–
SIP holds on M . In other words, we simply consider problem data from A∩B∩C. In virtue of
[2], under these assumptions, M is described by (1), (2). As in [3], we may then consider the
epigraph reformulation for describing the feasible set M . The latter reformulation is based
upon the fact that, according to (1), (2), x ∈ M if and only if for each y ∈ R

m it holds
g0(x, y) ≥ 0 or y �∈ Y<(x). Therefore, we have x ∈ M if and only if for any y ∈ R

m the
maximal entry among the function values of gk , k ∈ K , at (x, y) is non-negative. The latter
is equivalent with ψ(x) ≥ 0, where ψ(x) denotes the optimal value of the problem

Q(x): min
(y,z)∈Rm×R

z s.t. gk(x, y)− z ≤ 0, k ∈ K . (4)

Assumption A ensures that for local considerations the set R
m in (4) can be replaced by

an appropriate compact set. This implies the optimal value function ψ to be well-defined.
Since ψ constitutes a continuous function, we necessarily have ψ(x) = 0 for points x from
the boundary of M . For x ∈ ∂M , the points (y, z) with y ∈ N (x) are exactly the global
minimizers of Q(x).

Note that the defining functions of Q(x) are of class Cd . Thus we may define y to be
a nondegenerate element of N (x), if (y, 0) is a nondegenerate minimizer of Q(x) in the
sense of Jongen/Jonker/Twilt [7]. The latter means, that the linear independence constraint
qualification, strict complementary slackness and the second order sufficiency condition hold
at the solution (y, 0) of Q(x) (for details see [7]).

Definition 8 (Symmetric Reduction Ansatz) At x̄ ∈ M the Symmetric Reduction Ansatz
is said to hold if all elements of N (x̄) are nondegenerate.

Note that, if ψ(x̄) > 0, we have N (x̄) = ∅, thus here the Symmetric Reduction Ansatz
holds trivially. For ψ(x̄) = 0, if the Symmetric Reduction Ansatz holds, for any yi ∈ N (x̄)
there exist functions zi ∈ Cd(U ), defined on an open neighborhood U of x̄ , such that

M ∩ U = {x ∈ U | zi ≥ 0 for all i such that yi ∈ N (x̄)},
see [3] for details. The functions zi are called the reducing functions.

Remark 9 Note that the Symmetric Reduction Ansatz at x ∈ M implies the following asser-
tions.

(i) Each of the functions zi is the optimal value function of the problem Q(.), being local-
ized to a small neighborhood of yi .

(ii) V (x, yi ) is a singleton, its point is a positive multiple of D	zi . This motivates, why we
consider the elements of V (x, y j ) as substitutes for the gradients of the active inequality
constraints.
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3 Proof of the main result

3.1 Proof of assertion (i)

At a free local minimizer x of the function f (belonging to int M) the derivative D f vanishes,
and therefore x is necessarily a KKT-point for GSI P . We only need to prove that also local
minimizers from ∂M are KKT-points, provided that the problem data are chosen accordingly.

In order to analyze local minimizers from the boundary of M , we assume that the problem
data are chosen from A ∩ B ∩ C, hence M can be written in a the form used in Sect. 2.2,
based on the problems Q(x). In fact, the feasible set of GSI P consists of all x such that the
optimal valueψ(x) of Q(x) is non-negative. This is again the standard description of a feasi-
ble set in Generalized Semi-Infinite Programming, using one more variable (namely z) than
the original description. However, essential for attaining a first order necessary optimality
condition, MFCQ holds trivially at any point of the feasible set of the problem Q(x).

Since MFCQ holds for Q(x), a local minimizer x must be a KKT point, of course for
the Q(x)-description of the set M , see the citation of [10] at the end of Subsect. 2.1. For the
Q(x)-description the set corresponding to N (x) reads as

{(y, z) ∈ R
m × R | gk(x, y)− z ≤ 0, k ∈ K , z ≤ 0},

and for any pair (y, z) from this set we have z = 0, since x is a boundary point of M (implying
ψ(x) = 0). The set corresponding to V (x, y), now V (x, y, z), consists of all vectors v ∈ R

n

such that there exist nonnegative λk , k = 0, . . . , s + 1, such that at (x, y, z) we have
⎛

⎝
v

0
0

⎞

⎠ =
∑

k∈K0(x,y)

λk

⎛

⎝
Dx gk

Dy gk

−1

⎞

⎠ + λs+1

⎛

⎝
0
0
1

⎞

⎠ .

This is exactly the set V (x, y) known from the original formulation. Hence the KKT condi-
tion for the Q(x)-description implies the KKT condition for the original description. Since
B ∩ C is Cd -generic, this proves Assertion (i) of the theorem. Note that the set Y in Theorem
1, defined in Subsect. 3.2, is a subset of B ∩ C.

3.2 Proof of assertion (ii)

Our argumentation is based on jet representations of the Karush–Kuhn–Tucker Condition
in Definition 6. Since the Symmetric Reduction Ansatz trivially holds for points from the
interior of M , we only have to check minimizers x ∈ ∂M . We suppose that the problem data
are from A ∩ B ∩ C, which implies that x is a KKT of GSI P . Writing N (x) = {y1, . . . , y p}
with some p ∈ {1, . . . , n} and representing any of vectors vi ∈ V (x, yi ) by means of a linear
combination with strictly positive multipliers of a minimal number of vectors vi, j forming
vertices of the polytope V (x, yi ), we see that there exist numbers li , r i ∈ N, and index sets
K i , Li, j ⊂ K , i ∈ {1, . . . , p}, j ∈ {1, . . . , li } such that:

(i) For any i ∈ {1, . . . , p} we have K0(x, yi ) = K i .
(ii) For any i ∈ {1, . . . , p} the cone generated by {Dy gk(x, yi ) | k ∈ K i } has dimension

equal to r i .
(iii) For any i ∈ {1, . . . , p} and j ∈ {1, . . . , li }, we have Li, j ⊂ K i . Moreover, the set of

partial gradients {Dy gk(x, yi ) | k ∈ Li, j } generates a cone of dimension |Li, j | − 1 and
the convex hull of the set of full gradients {Dgk(x, yi ) | k ∈ Li, j } contains the vector
(vi, j , 0).
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(iv) The vector D f (x) belongs to the cone generated by the vectors {vi, j | i = 1, . . . , p,
j = 1, . . . , li }.

Note that the vectors vi, j are uniquely determined. Letting l := ∑p
i=1 li and

ϒ := {(x, y1, . . . , y p, v1,1, . . . , v p,l p ) ∈ R
n × R

mp × R
nl | (i)− (iv) hold},

we first show the existence of a Cd -generic set D of problem data, such that for problem data
from A ∩ Y with Y := B ∩ C ∩ D, the set ϒ consists of isolated points only.

Note that in the definition of ϒ , the variables vi, j play a structurally different role than
the variables x and yi . In such situations the structured jet transversality theorem (see [1])
may be applied, providing the existence of a Cd -generic set D of problem data such for all
problem data from Y , defined above, the subset in the so-called jet-space, characteristic for
ϒ , is met transversally. This means in particular, that ϒ constitutes a stratified set whose
dimension coincides with the difference between the amount of available degrees of freedom
and the number of independent equations representing the Conditions (i)–(iv) defining ϒ .

The ambient space ofϒ has dimension n +mp +nl. Now let us count the loss of freedom
caused by the conditions defining ϒ . For each i ∈ {1, . . . , p} the Condition (i) stands for
|K i | equations. For nonvoid ϒ we obviously have only r i ≤ m and r i < |K i |. Hence,
Condition (ii) reduces the freedom by (m − r i )(|K i | − r i ) degrees. Condition (iii) causes
for any (i, j) a loss of freedom of r i + 1 − |Li, j | degrees just for demanding that the set
of partial gradients {Dy gk(x, yi ) | k ∈ Li, j } generates a cone of dimension |Li, j | − 1 only.
The condition that the latter partial gradients contain the origin in their convex hull does
not reduce the degree of freedom. However the fact that vi, j is uniquely determined by the
corresponding full gradients, reduces the freedom by as many as n degrees. For summing up,
we distinguish two cases.

Case 1 (r i = m) In this case the loss of freedom Lossi caused by (i–iii) at (x, yi ), sums
up to

Lossi = |K i | + 0 + n · li +
li∑

j=1

(r i + 1 − |Li, j |). (5)

Setting Mi := max j |Li, j | on easily sees

|K i | ≥ Mi + li − 1. (6)

Using (6) for estimating |K i | in (5) and Mi for estimating |Li, j |, we have

Lossi ≥ Mi + li − 1 + n · li + li (m + 1 − Mi )

= (li − 1)(m + 1 − Mi )+ m + 1 + li − 1 + n · li
≥ m + li + n · li .

(7)

All inequalities in (7) turn to equalities if only if |Li, j | = m + 1 for all j . For avoiding
additional slack in (6), one must have K i = Li,1 ∪ · · · ∪ Li,li .

Case 2 (r i < m) Setting (for convenience) αi := |K i | − r i − 1 ≥ 0, one has

Lossi = |K i | + (m − r i )(|K i | − r i )+ n · li +
li∑

j=1

(r i + 1 − |Li, j |). (8)
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Using (6) for estimating |K i | in (8) and Mi for estimating |Li, j |, we have

Lossi ≥ Mi + li − 1 + (m − r i )(1 + αi )+ n · li + li (r i + 1 − Mi )

≥ m + li + n · li + (m − ri )αi + (li − 1)(r i + 1 − Mi )

≥ m + li + n · li .
(9)

For having equalities at all places in (9), one necessarily hasαi = 0 and (li −1)(r i +1−Mi ) =
0, i.e. |K i | = r i + 1 and li = 1. The latter implies Li,1 = K i , since otherwise there would
be positive slack in (6).

Finally, we see that Condition (iv) reduces the freedom by n − l degrees. If D f (x) does
not belong to the relative interior of the cone considered in (iv), this causes additional loss
of freedom. Summarizing, Conditions (i)-(iv) cause a loss of at least

p∑

i=1

(m + li + n · li )+ n − l = mp + nl + n

degrees of freedom, i.e. for problem data from A ∩ Y the set ϒ has dimension at most 0.
Since another loss of freedom would cause ϒ to be empty, we are in the following situation:

In Case 2, the point yi is a nondegenerate element of N (x), i.e. it delivers the constraint
zi (x) ≥ 0 for locally describing M . In Case 1, however, the situation may become more
involved. The point (yi , 0) still must be a strongly stable local minimizer of Q(x). But now,
the local optimal value function ψ takes the form

ψ = max
J
ψ J , (10)

where J runs through the set J of all minimal index sets J ⊂ K0(x, yi ) such that the convex
hull of the partial gradients {Dy gk(x, yi ) | k ∈ J }, contains the origin of R

m , and where ψ J

is the optimal value function of the problem

Q J (x) : min
(y,z)∈Rm×R

z s.t. gk(x, y)− z ≤ 0, k ∈ J.

Due to the choice of problem data from A ∩ Y and ϒ �= ∅, the point (yi , 0) is a nonde-
generate minimizer of Q J (x), implying that ψ J is a Cd -function. Returning to the Karush-
Kuhn-Tucker Condition, we see that the index sets Li, j belong to J . For J = Li, j , the
gradient Dψ J is a positive multiple of vi, j . By LICQ-SIP and Remark 5, all the vectors vi, j ,
i ∈ {1, . . . , p}, i ∈ {1, . . . , li }, are linearly independent. This linear independence, together
with the fact that D f (x) = ∑

i, j µ
i, j · vi, j with all multipliers µi, j being positive, and

with the maximum type of ψ in (10), implies that li = 1 for all i ∈ {1, . . . , p}. Otherwise
there would exist a strictly feasible strict descent direction for GSI P , contradicting the local
minimality of x .

Remark 10 At this point we have proved that at a local minimizer the feasible set does not
have a disjunctive structure, see [10].

Altogether, we have ψ = ψ J with J = K i in Case 1, hence (yi , 0) is a nondegenerate
minimizer of Q(x) in Case 1, too.

Remark 11 We conjecture that the Cd -generic set Y in Theorem 1 can even be chosen C2-
open.
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